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Abstraet--ln this paper the Kirchhoff transformation for shape sensitivity analysis of bodies with steady- 
state non-linear heat conduction is considered. The approach reduces the non-linear thermal problem to 
the standard Laplace problem. The variation of a general integral functional is described in terms of adjoint 
quantities. The design sensitivities are calculated using the material derivative concept. A thermal diffuser 

problem is considered to illustrate the method proposed. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

In solving problems of nonlinear thermomechanics 
the important step is to develop methods for efficient 
assessment of the nonlinear response of the body sub- 
ject to thermal loading. On the other hand, whenever 
a physical response is to be calculated from a math- 
ematical model there is also an interest in the sen- 
sitivity of that response with respect to parameters 
(design variables) of the problem. Therefore, tech- 
niques of the so-called design sensitivity analysis 
(DSA) have been developed to calculate variations in 
the response quantities with respect to some design 
variables. The sensitivity information may be used to 
assess the effect of uncertainties in the mathematical 
model, to predict the change in the response due to a 
design-related change in the parameters, and to opti- 
mize the system with the aid of mathematical opti- 
mization techniques. The methods of sensitivity analy- 
sis have been explored in various fields of science 
and engineering in the last two decades or so. More 
recently, the growing interest in the optimum design 
of systems subject to temperature constraints can be 
observed. The review of DSA methods for linear ther- 
mal problems can be found in refs. [1-3, 8], for 
instance. Although effective computer implemen- 
tations of DSA in general-purpose finite element codes 
for this class of thermal problems are still rather rare, 
the research area can now be considered well estab- 
lished. This is by no means so with DSA applications 
to nonlinear thermal problems. Even though the 
literature here is already quite extensive, no single 

formulation appears to be widely accepted as the most 
effective [4-7, 9-10]. 

The purpose of this paper is to present and discuss a 
further alternative for solving shape (and non-shape) 
sensitivity problems of temperature dependent, ste- 
ady-state, isotropic heat conducting solids. The meth- 
odology is quite straightforward: (i) the nonlinear 
problem is first reduced to a linear one in the form of 
the standard Laplace problem by using the Kirchhoff 
transformation ; (ii) the resulting problem is solved by 
using a version of the technique known for the linear 
thermal problems ; and (iii) the sensitivity solution so 
obtained is transformed back to the original problem. 
The shape sensitivity solution for the linear problem 
will be obtained by combining the so-called adjoint 
system method (ASM) with the so-called material 
derivative (MD) concept. The ASM consists in for- 
ming an adjoint system corresponding to the response 
functional at hand and using the adjoint fields to 
obtain the sensitivity desired. The MD technique is 
one of the two frequently adopted methodologies for 
solving shape sensitivity problems. In it, the material 
derivative concept of continuum mechanics is used to 
obtain variations of the field variables. Also, vari- 
ations to the volume and surface integrals over a vari- 
able domain are used to obtain the design sensitivity 
expression for the response functional. 

According to the above comment only the ASM 
approach is used in this paper, although an alternative 
technique known as the direct differentiation method 
(DDM) could in principle be employed as well. A 
quite similar remark can be made with respect to the 
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T temperature 
k thermal conductivity 
E Euclidean space 
q heat flux 
n unit vector normal to ~3{) 
V vector of  a deformation field 
t parameter 
x coordinate vector 

NOMENCLATURE 

D = V . n  
H curvature of  the boundary 
J functional 
H j(f~) Sobolev space of  order 1. 

Greek symbols 
f~ region considered 
i)f2 boundary surface. 

M D  approach the alternative technique known as 
the control volume (CV) approach could also be 
used. 

PRIMARY EQUATION 

We consider the nonlinear steady-state heat con- 
duction problem described in a three-dimensional 
region f~ by the equation 

V(kVT) = 0  ( x ] , x 2 , x ~ ) 6 f ~ E  (1) 

in which T is the temperature and k = k(T) is the 
temperature dependent thermal conductivity. The 
boundary conditions for equation (1) are given as 

T= ?~ (X~,X2,X~)eOf2T (2) 

k~,T q = -  (?n=~l (x,,x2,x3)e~?f~q, (3) 

where /~ is a given temperature on the boundary sur- 
face 0f~T with specified temperature, q is the heat flux, 
n is the unit outward vector normal to c3f~ and c] is a 
given heat flux on the boundary surface 0f~q. 

In order to transform equation (1) into the standard 
Laplace problem the Kirchhoff transformation can be 
used. The temperature T is replaced in it by a new 
variable 9 = 0(T) such that 

1 fr O(T) = koo k(T)dT k(T) = ko ~ ,  (4) 
o 

where ko = k(To). By using equation (4) in equation 
(1) we obtain 

V'-,~ = 0 in f~ (5) 

with the boundary conditions 

,9 = 0 = ko k(T)dT on any, (6) 
) 

~?n - c3T 0 n  - ~ n  = -~] on ~f~q. ( 7 )  

MATERIAL DERIVATIVE CONCEPT 

A one parameter family of  perturbed domains may 
be defined by the mapping 

x, = x + r V ( x ) ,  (8) 

where V(x) is the vector of  a deformation field and t 
is the parameter. Let z, be the solution of  a boundary 
value problem 

Az~ = f  x ~ ) t  (9) 

Az~=g x ~ ?f~,. (10) 

Then at(x0 =z,(x+tV(x))  is the solution of  the 
boundary value problem in ~"~t and it is evaluated at a 
point xt that moves with t. 

Material derivative 2 at x is defined as 

Zt(X ~ - / V ( x )  - -Z(X)  
Iim I - 2(x) 

- I 

= 0 .  ( l l )  

Then 

where 

2(x) = z'(x) + VzV(x), (12) 

_.'(x) = !ira I ;-z(x) I (13) 

The variation of  the functional defined in the domain 

J,2 = f F(z) df~ (14) 
J .  

is given as 

6Jn= f F,-z'dl~+ f~nFDd(~?fft) (15) 

and the variation of  the functional defined on the 
boundary aO 

J,~a = f G(z) d(0~) (16) 
J0 f~ 

is given as 
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( .  
6Je° = Jm ( G .z" + (VGn + G/-/)/)) d(Of~) 

- - ] - - ( V l n  2 -  V2n , )G( z ) l~  (17) 

where F. ,  G~ denote the partial derivatives of F and 
G with respect to z , / )  = V'n, H is the curvature of the 
boundary Of~, V, is the velocity field, and A and B are 
the end points of boundary (Of~. 

ADJOINT AND SENSITIVITY EQUATIONS 

Let us now consider the problem of a functional J 
of the form 

J= fof(O)df~+ foog(O,?n)d(aa), (18) 

wherefand g are regular functions that are continuous 
and differentiable with respect to their arguments. The 
functional depends on the variable 8 in f~ and on ,9 and 
its normal derivative on the boundary 0n. Variational 
form of the state equation (5) + (7) is given as 

fnVOV, dn+ fonq'Td(m)+ fo°o,.,d(m) =o 
for all r/• K, (19) 

where K = {q, q • Ht(f~)} is the admissible set for the 
problem and H ~ (f~) is the Sobolev space of order 1. 

By subtracting equation (19) from equation (18) 
one obtains an augmented functional as 

By using equations (15) and (17) we can obtain 
variation of the augmented functional as 

6.r= fof.,~O' d~+ fj/)d(m) 
+ f (g,oS t" +94.,9",. + (Vgn +gH)/ ) )  d(Of~) 

do o 

+ (V~n: - Vzn l )g]~  

-fo(vxv.+ vov,') d . -  f0° V0V./)d(m) 

-- f m ( q . ~ "  n + qrf + (V(q~/)n 

+ q ,H)/))  d(Of~) - (V,  n2 - V2n, ) q ,  1 

- f o ( 8 ' . t l  + ~ . t l '+  (V(8.r/)n 

+ ,9.tlI-1)/)) d(Of~) - (V,  nz - Vzn~ )8.rl  [ ~. (21) 

Using the relationship 2 = z' + VzV we get 

,~]=fof.(~-VOV)dD+fj/)d(m) 

+ f (.q.o(g- v0v) +g.0°(~q.. - v0.v) 
do 

+ (Va n +oH)/ ) )  d(c~n) + ( V, nz - V2n, )g I 

+ fn (V(°5- VSV)Vt/+ VSV(f/- Vt/v)) d(f~) 

- foo V OV./) d( ) - foo( q v ov),  

+q(f/--  Vt/V) + (V(qr/)n + qr//-/)/)) d(~3f~) 

-- (V, n2 - V2 n l )qrl [ An -- fan ((J'" -- VO..V)q 

+ 8,. (fl -- Vt/V) + (V (O.tl)n + ~t.rlH)/)) d(0n) 

- -  ( V i n 2  - -  V:n~)8 .q l~ .  
(22) 

Several terms can be cancelled on account of the 
relation 

foVOVodta+ fonqodWf~)+ f~ O..Od(Ota) = O. 
(23) 

If ~* • K is such that 

-I~n ~.0"  d(0D) = 0 (24) 

then equation (22) can be treated as a function of the 
domain variation Y which in turn can be expressed as 
a function of the design variables. 

If  equation (24) holds for 8 then it hods for all ~ • K. 
The adjoint equation can be presented as 

--fon ~..8*d(df~) = 0. (25) 

The sensitivity equation takes the form 

,:r=-fnfoVaVd~+fJ/)d(m) 
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- f  (ggVV+g~ VO.V 
f~ 

- (Vgn + g H ) l ) )  d (OO) + ( V~ n, - V2 n , )g  I A 

+ [ (V(V0V)Vr/+ VoqV(VqV)) d~  
J, 

- i ~  VOVO/5 d(Ofl) 

+ [ (q,:+VOVt 1 + qVqV- (V(qr/)n 
Ja Q 

+ qr/H)/)) d(c~) - ( V, n2 - V2n, )qq I 

+ [ (V~.r/V + ~,,,V~V- (VO.~q)n 
f~ 

+,9,,,qH)D) d(d~) - ( V~n: - V:n, )O ,q l ~. 

(26) 

Variational forms of equations (19) and (25) can 
be solved numerically by FEM for 0 and O* and the 
solutions used to calculate the sensitivity in equation 
(26). Applying the Green's formula inversely to the 
third term of equation (25) we get 

(' OO* 

- J,~. ~n-n ¢ d(0f~) - f+q.,,,,9*~ d ((~f2) 

+i~ g+:~,fi,~d(O~)-f~ 0"~,. d(c~f~) = 0.(27) 

Rearranging the terms we obtain 

f (V2,Cl* + f,,J~ df~+ f~  (g+,'~-q.:~O*- ~cOi)~ d(0~) 

+f~n (g,,~ -- oq*)¢,, dCc~f~) = 0. (28) 

Therefore the adjoint system reduces to 

V20*+f.~ = 0 in f~ (29) 

0&* 
- q:~O*+g,,~ in~q (30) 

0n 

0* =g.,,~,, inleT. (31) 

EXAMPLE PROBLEM 

As an example we take the thermal diffuser shown 
schematically in Fig. 1. The problem is treated as 

y 

(x 3 ,Y3) 

q=10 

q=O (Xo ,Yo) 

a~ 3 
3f~ 1 

0f~ 4 

q-O 
Fig. 1. Diffuser under consideration. 

r X 

axisymmetric with the x-axis taken as the axis of sym- 
metry. 

The system is described by the following boundary 
value problem : 

V ( k V T ) = 0  in~2 

q = 0 o n  ~f~2 ( ' j  (~ '~4  

q =  10Wm -2 onc3f~ 

k = 200(1 +0 .0T)  W m - 2 " C  

; (x0,Y0) = (0.1 m,0.1 m) 

( x 3 , Y 3 )  = ( 0  m, 0.05 m). 

The cost functional is assumed as 

J = f ( T-- TR) 2 d(01"~), 
d,+ 

where TR is the given temperature of 50oC. 
In practice the thermal diffuser problem leads to 

optimization of the shape of the domain fL which 
gives a uniform temperature distribution on ~ 3  under 
the maximum area constraint. Thus, the sensitivity 
analysis of the functional J has here a practical 
interpretation. For the shape sensitivity analysis 0Or 
and ~Oa are assumed to be fixed, c~f~ 3 is allowed to 
move horizontally and Ofl 2 is allowed to change shape. 
Let 0f~2 be approximated by the cubic function 

y = ~ a,x'+ 
n = 0  

which has to be satisfied by the coordinates of the 
four modal points (xi, yi), i = 0, 1 ,2 ,3;  such that 
x~ = 2/3x0, x2 = 1/3x0, x3 = 0. 

The design variable vector for the problem can be 
defined as d = [do, dj, dz] = [Yo, YbY2]. We have 

3 3 

"I'= £ E CnmXndm-lf- E Cn3Xny3 
m-On=O n 0 

and the velocity vector field on (3f~2 is expressed as 
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y ,  I 
I 

/ i 

Fig. 2. Finite element mesh. 

X 
) 

where 

m = O n - - O  

[ ¢ n m  ] 

Ii xo x, Xl ~ x? [ 

x: x~ x~/ 

x~ x~ x~J 

The variables in the sensitivity equation are given 
a s  

y ' (x)  
n 1 - -  

x/1  + (y '(x))  2 

--1 
Fl 2 - -  

~/1 + (y'(xl)2 

I y"(x) I 
H =  (1 + (y'(x))2) 3/2" 

The finite element model of the diffuser is shown in 
Fig. 2. 

The results of  the sensitivity analysis are given in 
Table 1. Two separate problems are considered: the 

Table 1. Sensitivity analysis for the thermal diffusion problem 

Problem Design Jl J2 A J=  J2-- J~ J' 

d o 33.256 
A d 1 32.799 -0.457 -0.511 

f l  2 30.828 -2.428 -2.540 
d 3 31.717 --1.538 --1.559 

d o 108.550 
fl I 109.094 0.545 0.448 
d 2 101.081 -7.469 -7.763 
d 3 105.141 --3.409 -3.492 

nominal  design is given by d = [0.1, 0.0833, 0.0666] in 
the problem A and by d = [0.09, 0.0823, 0.0543] in 
the problem B. The values Jl of the cost functional in 
Table 1 correspond to the nominal  designs d °, while 
the values ,/2 correspond to successive values of the 
cost functional for the design vector modified by 
increasing each of its components in turn by 1% (i.e. 
d 1, d 2, d 3 have been obtained by increasing the first, 
second and third component  in d o by 1%, respec- 
tively), AJ stands for the difference between J2 and J], 
while J '  is the sensitivity gradient obtained by the 
technique proposed in this paper. On the whole the 
results by both of the methods are close to each other. 
Existing differences between AJ and J '  can be attri- 
buted to errors inherent in the finite difference evalu- 
ation of sensitivity. 

CONCLUSIONS 

(1) The Kirchhoff transformation has been proved 
to be a useful tool in developing an effective technique 
for shape design sensitivity assessment in nonlinear 
steady-state heat conduction problems. 

(2) Implementat ion of the method in the standard 
finite element program is straightforward ; the method 
can thus be used for optimization of problems of 
industrial significance. 
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